
25 Most Dangerous Software
Weaknesses
Pete Freitag, Foundeo Inc.

About Me
Pete Freitag

• 20+ Years ColdFusion Experience

• Company: Foundeo Inc.

• Products: FuseGuard, HackMyCF, Fixinator

• Consulting: Code Reviews, Server Review, CFML Security Training

• blog: petefreitag.com

• twitter/github: @pfreitag

• email: pete@foundeo.com

Where did the “25
Most Dangerous
Software
Weaknesses” list
come from?
The CWE Top 25 List

Photo by Claus Jensen on Unsplash

CWE - Common Weakness
Enumeration

From the people who brought you the CVE: Mitre

CWE Top 25
Scoring Metrics

Source: https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

The thing about TOP N Lists
There are more than 25 CWE’s…

Source: https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

Trends of the CWE Top 25

Source: https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

#25 - Improper Control of Generation of Code
CWE-94 Code Injection

• A few different ways this can happen in CFML, most common:

• Evaluate

• IIF

• cfinclude

#25 Fixing RCE
Replace IIF with Ternary Operator

<cfset greet = iif(len(name), de("Hi #name#"), de("Hi"))>

<cfset greet = (len(name)) ? "Hi #name#" : "Hi">

#25 Fixing RCE
Fixing Evaluate

evaluate(“url.#name#”)

url[name]

Rid your code of evaluate() - terrible for both performance and security

#25 RCE
Good News / Bad News

• Good News

• Easy to find

• Easy to fix

• Bad News

• Very Dangerous

• Might have a lot if your code was written early 2000’s

#24 - Improper Restriction of XML External Entity Reference
CWE-611 XXE

• What is an XML Entity? Similar to HTML Entities…

• <

• "

• BUT Xml Lets you define your own entities

#24 - XML Entities
XML Lets you define your own custom entities

<?xml version="1.0" ?>
<!DOCTYPE d [
 <!ENTITY xxe SYSTEM "http://httpbin.org/uuid">]>
<tag>&xxe;</tag>

Example: https://trycf.com/gist/64b7ec4e8d6774a51c1e99552030df7f/acf2021?theme=monokai

https://trycf.com/gist/64b7ec4e8d6774a51c1e99552030df7f/acf2021?theme=monokai

#24 - XML Entities
Mitigating

• No Global API in Adobe ColdFusion To Disable XML Entities: Feature Request #CF-4201057

• You can pass: xmlParse(xml, false, {allowExternalEntities=false}) in ACF (thanks Brian!)

• Avoid Parsing XML From Untrusted Sources

• HTTP Requests, APIs, Feeds

• Check XML For Custom DocTypes, ELEMENT Definitions

• Use a safer API:

• SafeXmlParse: https://github.com/foundeo/safexmlparse

• Convert to JSON: https://gamesover2600.tumblr.com/post/180776378949/convert-xml-to-json-
in-1-line-of-code-using

https://tracker.adobe.com/#/view/CF-4201057
https://github.com/foundeo/safexmlparse
https://gamesover2600.tumblr.com/post/180776378949/convert-xml-to-json-in-1-line-of-code-using
https://gamesover2600.tumblr.com/post/180776378949/convert-xml-to-json-in-1-line-of-code-using
https://gamesover2600.tumblr.com/post/180776378949/convert-xml-to-json-in-1-line-of-code-using

#23 Uncontrolled Resource Consumption
CWE-400

• Denial of Service

• Use LIMIT / TOP on Queries

• Add a maximum iteration when looping over an untrusted input

#22 Concurrent Execution using Shared Resource with Improper
Synchronization
CWE-362 - Race Condition

• Ensure Proper Use of cflock

• Use var / local scope within parallel ArrayEach

#21 - Server-Side Request Forgery (SSRF)
CWE-918

• SSRF Happens When your server makes a HTTP request to an arbitrary URL

• Can allow attacker to hit other http services behind the firewall (dbs, caches)

• Cloud Metadata APIs can leak access keys or other sensitive info:

• Tip: on AWS Disable IMDSv1 and use IMDSv2 instead

#21 - SSRF
Some Functions / Tags That Can Request a URL

• cfhttp

• PDF: cfdocument / cfhtmltopdf (within HTML: img, iframe, etc)

• Images: isImageFile

• XML: XmlParse, XmlSearch, XmlValidate

• Additional List: https://hoyahaxa.blogspot.com/2021/04/ssrf-in-
coldfusioncfml-tags-and.html

https://hoyahaxa.blogspot.com/2021/04/ssrf-in-coldfusioncfml-tags-and.html
https://hoyahaxa.blogspot.com/2021/04/ssrf-in-coldfusioncfml-tags-and.html
https://hoyahaxa.blogspot.com/2021/04/ssrf-in-coldfusioncfml-tags-and.html

#20 - Incorrect Default Permissions
CWE-276

• Use OS File System Permissions

• Can your CFML app write anywhere it wants? Does it need to?

• Use the Lockdown Guide

#19 Improper Restriction of Operations
within the Bounds of a Memory Buffer
CWE-119

“Java is said to be memory-
safe because its runtime error
detection checks array bounds

and pointer dereferences.”

Photo by Tyler Nix on Unsplash

Thanks Java

Source: https://en.wikipedia.org/wiki/Memory_safety

https://en.wikipedia.org/wiki/Memory_safety

#18 - Missing Authentication for Critical Function
CWE-306

• Authentication = User is who they attest to be

• Authorization = User has permission to perform action

• Without Authentication you cannot have Authorization

• Recent Example: Optus Data Breach

• Allegedly there was an API exposed to the internet without any
authentication.

• Check your app to make sure it requires authentication where it should. For
bonus points automate this check in unit / integration tests.

#17 Improper Neutralization of Special Elements used in a Command

CWE-77 Command Injection

• Take care when using cfexecute, or other APIs that may wrap a native
command

<cfexecute name=“c:\bin\tool.exe” arguments=“-n #url.n#”>

#16 - Missing Authorization
CWE-862

• Does your code check that the user is allowed to perform the requested
function?

• IDOR: Insecure Direct Object Reference: document.cfm?id=123

• Sounds simple but these types of issues fall under the radar, because “it
works”

• Need to test that it “doesn’t work” for X role

• No easy way to do this, but you can write tests

#16 - Missing Authorization
Where are IDORs Commonly Found?

1. REST APIs 31.8%

2. GET parameters 25.8%

3. POST request bodies 21.2%

4. graphQL endpoints 9.1%

5. PUT parameters 4.5%

6. IDs in the request header
3.0%

7. IDs in the cookies 3.0%

8. Misc Query langauges 1.5% Source: https://medium.com/@nynan/what-i-learnt-from-reading-220-idor-bug-reports-6efbea44db7

https://medium.com/@nynan/what-i-learnt-from-reading-220-idor-bug-reports-6efbea44db7

#15 - Use of Hard-coded Credentials
CWE-798

• API Keys / Passwords in Code

• Embedded / Hard Coded Certificates

#15 - Hard Coded Credentials
Avoiding Hard Coded Credentials

• Environment Variables

• Secure Key Store Services:

• Self Hosted: Hashicorp Vault

• AWS: EC2 Parameter Store, KMS, Secrets Manager

• Azure: Key Vault

• GCP: Key Vault, Secret Manager

#14 - Improper Authentication
CWE-287

• So many ways Authentication can go wrong…

• Weak Passwords, Credential Stuffing, Weak Session Cookie Config

• Use SSO

• Most orgs now have the ability a SSO provider, either through
ActiveDirectory, Google Apps, Okta, etc.

• You can use SAML to integrate with the identity provider in your ColdFusion
Apps. SAML Features added to CF2021

#13 - Integer Overflow or Wraparound
CWE-190

• Max value of a 32 bit unsigned integer is 4,294,967,295

• What happens when you add 1?

• In MySQL < 5.5.5 it silently wraps around to 0

#12 - Deserialization of Untrusted Data
CWE-502

• Java Deserialization Vulnerabilities

• Has the ability to cause remote code execution if malicious content is
added to the serialized class.

• Avoid Untrusted Input to ColdFusion’s Deserialize Function

• Good reason to make sure you have blocked the flash remoting endpoints

• JSON Deserialization - Consider Validating JSON with a JSON schema first

#11 - NULL Pointer
Dereference
CWE-476

#10 - Unrestricted Upload of File with Dangerous Type
CWE-434

• Regularly review all your file upload code, and make sure that it:

• Always checks the file extensions of uploaded files against a list of allowed
extensions.

• Does not upload directly under the web root (at least before validation)

• Don’t rely on mime type checks alone, they don’t work!

#9 - Cross-Site Request Forgery (CSRF)
CWE-352

• Causing a request to be made by an authenticated and authorized user’s
browser to perform an unwanted action.

#9 - CSRF
Best Example

• Netflix in 2006 - Remember when they rented DVDs?

• To Add a Movie to your Queue:

• Request to: http://www.netflix.com/AddToQueue

• Pass a movie id: movieid=70011204

#9 CSRF
Netflix Example

Step 1: Create a Web Page With The Following img tag:

Step 2: Get People to Visit the Page

Step 3: Millions of people have added Sponge Bob Square Pants the Movie to their Queue

#9 CSRF
Fixing CSRF

• SameSite Cookies

• Check HTTP Method (eg: require POST)

• CAPTCHAs - Helpful but causes usability issues

• Use a CSRF Token

• CFML Functions: CSRFGenerateToken() and CSRFVerifyToken()

#8 - Improper Limitation of a Pathname to a Restricted Directory

CWE-22 Path Traversal

• Path Traversal can happen whenever you construct a file path with unsafe
variables.

• Example: <cfinclude template=“html/#url.name#”>

#7 - Use After Free
CWE-416

#6 - Improper Neutralization of Special Elements used in an OS Command

CWE-78 - OS Command Injection

• Similar / Child of to #17, CWE-77

• Command vs OS Command

• Same Protections Apply

#5 - Out-of-bounds
Read
CWE-125

#4 - Improper Input Validation
CWE-20

• This is a catch all CWE

• Almost all vulnerabilities are caused by failing to validate an input!

• TLDR: Add validation, improve security

#3 - Improper Neutralization of Special Elements used in an SQL Command

CWE-89 SQL Injection

• Classic Example:

<cfquery>
 SELECT story
 FROM news
 WHERE id = #url.id#
</cfquery>

#3 SQL Injection
Fixing SQL Injection

• Use cfqueryparam

<cfquery>
 SELECT story
 FROM news
 WHERE id = <cfqueryparam value=“#url.id#”>
</cfquery>

#3 SQL Injection
With queryExecute

queryExecute(“SELECT story
FROM news
WHERE id = #url.id#”);

queryExecute(“SELECT story
FROM news
WHERE id = :id”, {id=url.id});

#3 - SQL Injection
When Parameters Don’t Work

• Places that parameters may (depending on DB) not work:

• ORDER BY clause

• SELECT TOP n

• LIMIT / OFFSET

• Validate!

• Use SELECT TOP #int(url.n)#

• Use cfqueryparam whenever you can

#3 - SQL Injection
Auto Fixing SQL Injection

• Fixinator can scan your code and autofix certain vulnerabilities

#2 - Improper Neutralization of Input During Web Page Generation

CWE-79 Cross-site Scripting / XSS

<cfoutput>Hello #url.name#</cfquery>

#2 - Fixing XSS
Encoder Methods

<cfoutput>Hello #encodeForHTML(url.name)#</cfquery>

<cfoutput encodefor=“html”>Hello #url.name#</cfquery>

#2 Fixing XSS
Picking the correct encoder

Context Method

HTML encodeForHTML(variable)

HTML Attribute encodeForHTMLAttribute(variable)

JavaScript encodeForJavaScript(variable)

CSS encodeForCSS(variable)

URL encodeForURL(variable)

#1 - Out-of-bounds
Write
CWE-787

Learn More

• ColdFusion Security Class - Online in December:

• https://foundeo.com/consulting/coldfusion/security-training/

• Ask Me

• Resources: OWASP, CWE Site

https://foundeo.com/consulting/coldfusion/security-training/

Thank You!
pete@foundeo.com

