
SECURING MATURE CFML CODEBASES
PETE FREITAG, FOUNDEO INC.

foundeo

ABOUT PETE

• My Company: Foundeo Inc.

• Consulting: Code Reviews, Server Reviews, Development

• FuseGuard: Web App Firewall for CFML

• HackMyCF: Server Security Scanner

• Blog (petefreitag.com), Twitter (@pfreitag), #CFML Slack

• Using CFML since late 90s

http://foundeo.com
http://petefreitag.com

AGENDA

• Large Codebase Challenges

• How do you get started?

• Low Hanging Fruit

• Things to focus on

• What’s Next?

• Disclaimer: This approach may not be appropriate for all
scenarios. This is a generalized approach which I have found can
work well for many.

AN OLD &
LARGE
CODEBASE?

DO YOU HAVE TO
WORK WITH

TYPICALLY

MATURE CODEBASES

• Have thousands of source code files

• Has code you hope you don't have to see again.

• Can take weeks, but often months of work to properly secure.

• Can be hard to fix, brittle

• Probably uses outdated techniques

FOR SECURING A LARGE CODEBASE

DIFFERENT APPROACHS

• Beast Mode - Spend several weeks dedicated to identifying &
fixing vulnerabilities.

• Prioritize - Spend time identifying the most critical vulnerabilities
and patch less critical vulnerabilities as you see them.

• As you go - As you work on files fix vulnerabilities as you see
them. You may miss some vulnerabilities with this approach.

SECURING THAT CODE

HOW DO YOU START?

STEP 1: DELETE THE CODE!

YOU MIGHT
HAVE A LOT
OF CODE THAT
NEVER RUNS

OLD CODE IS
OFTEN FULL
OF SECURITY
HOLES

HOMEMADE VERSION CONTROL

YOU MIGHT BE USING…

• index_2.cfm

• index.old.cfm

• index-backup.cfm

• index-2007-03-04.cfm

• index-copy.cfm

• folder_backup2009/

VERSION CONTROL

• Those backup folders and files are probably full of vulnerabilities.

• Version Control Server keeps backups of all your code and all
changes you have ever made to it.

• Sync server source code with version control.

• Identify if someone changed something on the server.

IDENTIFY UNUSED CODE

VERSION CONTROL

• Spend some time to identify unused code.

• Delete it!

• Version control has your back, if you deleted something you can
recover it from the repository.

THERE ARE LOTS OF FADS IN SOFTWARE
DEVELOPMENT, VERSION CONTROL IS NOT

ONE OF THEM.

”

“

FINDING OLD FILES (MODIFICATION DATE)

WAYS TO IDENTIFY OBSOLETE CODE

• Unix / Linux / Mac  
 
$> find /wwwroot/ -mtime +365  

• Windows  
 
C:\>forfiles -p "C:\web" -s -m *.* /D -365 /C  
 "cmd /c echo @path"

FINDING OLD FILES (BY ACCESS DATE)

WAYS TO IDENTIFY OBSOLETE CODE

• Unix / Linux / Mac  
 
$> find /wwwroot/ -atime +365  

• The atime (last accessed time) timestamp may be disabled on
your server for performance (if drive was mounted with noatime
flag).

• RHEL mounts drives with the relatime flag by default, which is
not real time but may be sufficient for these purposes.

PATCH THAT SERVER

• Use ColdFusion 11 or
greater, CF10 Ended May
2017 (CF9 and below are no
longer supported and no
longer patched by Adobe).

• Windows 2008 (EOL 2015)

• Java 8+, Java 7 (EOL 2015),
Java 6 (EOL 2013)

FIX VULNERABILITIES

PATCH THAT SERVER

• Multiple Denial of Service Vulnerabilities in old versions of Java

• Path Traversal via Null Byte injection JVM (< 1.7.0_40)

• CRLF Injection (CF10+)

• File Uploads “somewhat” more secure (CF10+)

• TLS / SSL Protocol Implementations

• Java 8 Not supported on CF9 and below

• Use HackMyCF to help keep you on top of all this

MITIGATES POTENTIAL IMPACT OF A VULNERABILITY

LOCKDOWN THE SERVER

• What user is the JVM running as?

• If your CFML server is running as SYSTEM or root then the
attacker can do a lot more harm.

• What permission does the user have?

• If CFML server user only has readonly access to web root and
CFML server install directory then less harm can be done
(easily).

• Does CFML server need full write access to web root? or just
one or two directories?

WEB APPLICATION FIREWALLS

IMPLEMENT A WAF

• Inspect HTTP Request or Response

• Block or log malicious requests

• Provides Defense in Depth

• Several options

• Hardware Based

• Software Based / Application Level

• FuseGuard

SECURING THAT CODE

HOW DO YOU START?

STEP 1: DELETE THE CODE!

STEP 1: LOW HANGING FRUIT

SECURING THAT LARGE CFML CODEBASES?

HOW DO YOU START

STEP 2: IDENTIFY HIGH RISK
VULNERABILITIES IN YOUR CODE.

TAKE CARE OF THESE FIRST

HIGH RISK VULNERABILITIES

• File Uploads

• Remote Code Execution / Dynamic Evaluation Issues

• SQL Queries (SQL Injection)

• File System Access / Path Traversals

• Dynamic Process Execution (CFEXECUTE)

• Anything that can fully compromise server

HOW I CLASSIFY VULNERABILITIES

Compromises
the server(s) directly

Compromises
users

Both are important but where do you start?

HOW I CLASSIFY VULNERABILITIES

Compromises
the server(s) directly

Compromises
users

Both are important but where do you start?

Examples:
SQL Injection

File Upload / Access
Remote Code Execution

Examples:
XSS

CSRF
Session Hijacking

EVALUATE
REMOTE CODE EXECUTION VIA

CODE EXAMPLE

COMMON LEGACY EVALUATE

<cfset day_1 = "Wednesday">
<cfset day_2 = "Thursday">
<cfset day_3 = "Friday">

<cfoutput>
 #Evaluate("day_#url.day#")#
</cfoutput>

EVALUATE
EXAMPLE

USE BRACKET NOTATION

FIXING LEGACY EVALUATE EXAMPLE

<cfset day_1 = "Wednesday">
<cfset day_2 = "Thursday">
<cfset day_3 = "Friday">

<cfoutput>
 #variables["day_#url.day#"]#
</cfoutput>

SEARCH CODE FOR EVALUATE

FIXING EVALUATE ISSUES

• Search Code for "Evaluate"

• In most cases you should not need to use Evaluate at all, use
brackets.

• If the variable is a query you may need to use
queryName[row][columnName] notation.

• Not all cases are super simple to fix, but most are.

• Remove all Evaluate calls from your code.

• Also look at PrecisionEvaluate

DO ANY OTHER
FUNCTIONS EVALUATE

DYNAMICALLY?

IF YOU ARE USING IIF STOP USING IIF

IIF

Hi #iif(len(url.name) EQ 0, de("Friend"), de(url.name))#

The second and third arguments are evaluated dynamically!

IIF EXAMPLE

USE TERNARY OPERATOR (CF9+)

FIXING IIF

Hi #(!len(url.name)) ? "Friend" : url.name#

Hi #url.name?:"Friend"#

ELVIS OPERATOR (CF11+)

Elvis Operator tests to see if url.name is defined / not null

FILE UPLOADS
COMMON YET DANGEROUS

FILE UPLOADS
3 CORE RULES

RULES # 1

FILE UPLOADS

Never trust a MIME!

NEVER TRUST A MIME

FILE UPLOADS RULE #1

• CF10 added strict attribute to cffile action=upload

• Instead of validating the MIME type that the browser sends it
validates the the file content (eg fileGetMIMEType()).

• Can we still get around this?

• Lucee also has strict attribute but it doesn't seam to do much.

RULE #2

FILE UPLOADS

• Always validate the file extension against a whitelist

• CF10+ allows you to specify file extensions in accept attribute

• Lucee also supports extensions in accept attribute

• In Lucee you can mix MIME types and extensions, don't do that.

RULE #3

FILE UPLOADS

• The upload destination must be outside of the web root

ADDITIONAL TIPS

FILE UPLOADS

• Inspect file content: fileGetMimeType, isImageFile, isPDFFile, etc

• Upload to static content server (s3 for example)

• Upload directly to s3: https://www.petefreitag.com/item/
833.cfm

• Make sure directory serving uploaded files cannot serve dynamic
content.

• File Extension Whitelist on Web Server (eg IIS Request Filtering)

• secureupload.cfc: https://github.com/foundeo/cfml-security/

https://www.petefreitag.com/item/833.cfm

PATH TRAVERSAL
FILE SYSTEM ACCESS &

VULNERABLE CODE EXAMPLE

PATH TRAVERSAL

 <cfinclude template="path/#fileName#">

PATH TRAVERSAL
EXAMPLE

TIPS

FIXING PATH TRAVERSALS

• Avoid variables in paths

• If you really need to use a variable strip out everything
except a-z0-9

• Use the CF11 Application.cfc setting this.compileExtForInclude
setting.

CAN BE TIME CONSUMING

FINDING FILE ACCESS ISSUES

• As you can see any code that accesses the file system can
potentially be exploited.

• Review all function calls / tags that access file system

• cffile, cfdocument, cfinclude, cfmodule, cfspreadsheet

• fileRead, fileWrite, fileOpen, etc

SQL INJECTION

CODE EXAMPLE

CLASSIC SQL INJECTION

 <cfquery>
 SELECT title, story
 FROM news
 WHERE id = #url.id#
 </cfquery>

CODE EXAMPLE

FIXING SQL INJECTION

 <cfquery>
 SELECT title, story
 FROM news
 WHERE id = <cfqueryparam value="#url.id#">
 </cfquery>

SQL INJECTION

SCRIPT BASED

queryExecute("SELECT story FROM news WHERE id = :id", {id=url.id});

queryExecute("SELECT story FROM news WHERE id = #url.id#");

Vulnerable

Not Vulnerable

FINDING SQL INJECTION

• Search codebase for cfquery, queryExecute, ormExecute query

• Use Static Code Analyzer (CFBuilder 2016)

• Fix when you see one as you work

SECURING LEGACY CFML

STEP 3: FIX ADDITIONAL
VULNERABILITIES IN YOUR CODE.

TO REVIEW

WHAT'S NEXT

• Session Handling (sessionRotate, sessionInvalidate)

• Scope Injection

• Authentication / Authorization / Forgot / Remember Me Code

• Cross Site Scripting

• CF2016 <cfoutput encodefor="html">

• Cross Site Request Forgery

• Timing Attacks

• Visit OWASP.org for tons of info about web application vulnerabilities

http://owasp.org

THANK YOU
Questions?

Pete Freitag
pete@foundeo.com

foundeo.com | fuseguard.com | hackmycf.com

foundeo

mailto:pete@foundeo.com
http://foundeo.com
http://fuseguard.com
http://hackmycf.com

