
Intro to CFC’s
Presented by Pete Freitag.

Foundeo Inc.

1

What’s a CFC?

• ColdFusion Component

• Similar to a Class in OOP

• A Logical Grouping of data and functions
(or methods)

2

OOP, OMG!
inheritance constructors polymorphism

interfaces overriding beans dao factories

gateways design patterns oop getters
setters super this class object orm

singleton abstraction coupling
void arguments encapsulation

What’s all that fancy talk?
3

Words I may
interchange

• Component = Object

• Function = Method

4

Why use CFC’s

• Maintainability

• Reusability

• Quality

• Readability

• Separation of Responsibility

5

Functions

• We need to know how to write a function
before we can write a CFC.

• We must use the CFFUNCTION tag for
CFCs.

6

<CFFUNCTION>
Common Tag Attributes

Attribute Description
Name The name of the function.

ReturnType The data type (eg “string”) of the data that the function
returns. Or void if it doesn’t return anything.

Output Yes/No this function outputs stuff to browser.

Hint Documentation for the function.

Access
Only Applies to CFC’s. What code can call this
function? Public, Private, Package, Remote

Roles For integration with CFLOGIN. Who can call this
function?

7

A Simple Function

<cffunction name="todayIs" returntype="string" output="false">
	 <cfreturn DateFormat(Now(), "dddd mmmm d, yyyy")>
</cffunction>

Data is returned from the function with the <cfreturn> tag.

8

Passing Data into
Functions

• The data that is passed into a function is
called an argument

• We define arguments with the...
you guessed it: <cfargument> tag.

9

<CFARGUMENT>
Common Tag Attributes

Attribute Description
Name The name of the argument.

Type The data type (eg “string”) of the argument.

Required Yes/No this argument must be passed in.

Default If the argument is not passed in, this is the default
value.

Hint Documentation about the argument.

10

Function with
Arguments

 <cffunction name="myDateFormat" returntype="string" output="false">
	 <cfargument name="date" type="date" default="#Now()#">
	 <cfreturn DateFormat(arguments.date, "dddd mmmm d, yyyy")>
 </cffunction>

Arguments values are accessed as: arguments.name

11

Variables in Functions

• Variables that are only used inside the
function are called “local” variables. They
MUST be defined below your arguments
using the VAR keyword.

• Otherwise the variable is accessible
outside of the function, you could
overwrite another variable.

• Code example.

12

Creating a CFC

• At their most basic level, a CFC is just a
bunch of functions inside a <cfcomponent>
tag.

• When you store data in a CFC, then
they become powerful.

• You can have many instances of a CFC
each having different data.

13

CFC Files

• CFC’s are saved using the file extension .cfc
the name of the file is also the name of the
CFC.

14

City.cfc
 <cfcomponent hint="I represent a city" output="false">
	 <!--- data contained in the City Component --->
	 <cfset variables.cityName = "Syracuse">
	
	 <cffunction name="getCityName" returntype="string" output="false">
	 	 <cfreturn variables.cityName>
	 </cffunction>
	
	 <cffunction name="setCityName" returntype="void" output="false">
	 	 <cfargument name="cityName" type="string" required="true">
	 	 <cfset variables.cityName = arguments.cityName>
	 </cffunction>
	
 </cfcomponent>

15

Invoking a CFC

• Three options:

• CreateObject()

• CFOBJECT

• CFINVOKE

16

Invoking a CFC

<!--- CreateObject --->
<cfset cityObject = CreateObject("component", "City")>
<cfoutput>#cityObject.getCityName()#</cfoutput>

<!--- OR CFOBJECT --->
<cfobject component="City" name="cityObject">
<cfoutput>#cityObject.getCityName()#</cfoutput>

<!--- OR CFINVOKE --->
<cfinvoke component="City" method="getCityName" returnvariable="name">
<cfoutput>#name#</cfoutput>

17

Packages

• The folder that the .cfc file is located in is
called it’s “Package”.

• If you are in the same folder/package you
can reference other CFC’s simply by their
file name. Otherwise use package notation.

• “folderA.folderB.MyCFCName” would
be used for /folderA/folderB/
MyCFCName.cfc

18

Packages

• You can place CFC’s in the custom tag
folder to have them accessible to all your
sites.

• You can also setup mappings in the
ColdFusion administrator.

• “myMappingName.MyCFCName”

19

Example 4

20

Example 5
• Inheritance

• Defines a relationship between two
components. Allows you to “inherit”
code from the parent.

• Must be an “IS A” relationship.

• Book “is a” Product

• City “is a” State (Not True)

• City “has a” State

21

Using Inheritance

• Use extends attribute of cfcomponent to
specify parent component name.

• Use super keyword to refer to parent
component.

• eg: super.methodName() to call a method
on the parent (typically when
overriding).

22

Interfaces

• New in CF8

• Defines a set of functions that must be defined.
If the component defines all those methods it is
said that it implements the interface.

• Unlike inheritance, you can implement many
interfaces (you can only extend one
component).

• Great For Building Component API’s

23

Definitions

• Let’s go back to the beginning and define
some of those terms.

24

CFC’s Vs Other OOP

• Constructors (announced for CF9)

• Destructors (not supported)

• Overloading (not supported)

• Multiple Inheritance (not supported, thankfully)

• Interfaces (now supported in CF8)

25

Thanks!
Any Questions??

blog: petefreitag.com

26

